Short rotation forest bioenergy synthesis

Alan Jones, Peter Hall, Dave Palmer, Serajis Salekin, Dean Meason

11.6 Mt CO₂e yr⁻¹ total reduction in emissions

Sector	Current Bioenergy demand (PJ yr ⁻¹)	Bioenergy demand in 2035 (PJ yr ⁻¹)	Increase
Liquid biofuels	0.1 ^d	9.5	9.4
Buildings heat ^b	9.0	9.0	0.0
Industrial heat ^a	0.5	12.0	11.5
Electricity generation	7.2	7.2	0.0
Total PJ yr ⁻¹ from biomass	16.7	37.7	21

Forestry -14.5 Mt CO₂^e yr⁻¹

Forestry

Sheep and beef farms cover 9 M hectares of NZ = 1/3 of land area

3.6 M hectares biofuel
forests = NZ's total coal, oil
and gas requirement
= 13 % land area

Climate Change Commission proposal = ± 240,000 ha <1 % land area Challenges set by the Climate Change Commission

- Massive upscaling of bioenergy generation needed
 from environmentally sustainable sources
- 'Net Zero' track to be met by 2035
- Less than 15 years to bring bioenergy feedstocks online

Solution

• Short rotation bioenergy forestry

Short rotation harvest regime challenge

low relative growth efficiency

Solution: high stocking densities + fast-growing species

Typically 1,000 – 1,500 stems ha⁻¹

Challenge: Potential low profitability of bioenergy forestry

- Returns (at current market rates) are low
- Reduce land costs
- Reduce harvesting costs
- Reduce transport costs

Challenge: Need to avoid conflict with food production

Solution: Land Use Capability Class 5-8 land

Hill country

Challenge: Erosion risks and harvesting challenges

Some risks can be mitigated by careful design, management and automated technology

Challenge: transport costs

Distance-to-processing centres for ports and major wood processing centres used as proxies

Analysis of costs and revenues modelled in Forestry Investment Framework (FIF)

Costs (C) Structural	Revenues (R)	
Establishment	Timber (\$/tonne)	
Access road construction		
Internal landings	Carbon (\$/NZU)	
Internal road construction		
Harvesting		
Transport from harvest site to road network ETS compliance		

Economic analysis combined with spatial analysis of land suitability

- 'Red zoned' erosion-prone land excluded
- DOC conservation estate excluded
- Existing forest areas excluded
- Existing agricultural land excluded
- Site suitability criteria for tree species evaluated

Resolution: a total potential afforestable area for short rotation bioenergy forestry = 3.7M hectares

- Based on four possible scenarios for future ETS carbon returns:
- \$25
- \$50
- \$75
- \$100

Climate Change Commission suggests a \$140 t⁻¹ carbon price will be needed by 2030

Which species?

Rank	Species	Median oven-dry stem yield (t ha-1 yr⁻¹)	Min ave. temp. (°C)	Precip. range (mm)	Overall suitability?	Notes
1	Pinus radiata	26.0 [8]	10 [57]	<750 - >1250 [58]	Excellent	Performs well across a range of sites
2	Eucalyptus fastigata	23.0 [8]	12 [59]	750 - 1900 [59]	Excellent	Performs well across a range of sites
3	E. regnans	21.0 [8]	10 [60]	750 - 2000 [59]	Excellent	Performs well across a range of sites
4	E. nitens	22.1 [8]	-3 [61]	750 – 17501 [61]	Good	Limited to colder high-altitude sites only
5	E. saligna	20.6 [8]	8 [62]	800 – 1800 [62]	Good	Will not tolerate strong winds[63]
6	E. maidenii	17.6 [8]	Mediterr	anean climate[64]	Average	Relatively low productivity
7	E. botryoides	14.7 [8]	W	/et sites[65]	Average	Relatively low productivity, prone to pests
8	E. globoidea	12.5 [8]	>-9 [66]	800 – 2500 [67]	Average	Relatively low productivity
9	E. delegatensis	11.5 [8]	>-14 [68]	Moist sites [68]	Average	Relatively low productivity
10	Cupressus macrocarpa	10.9 [8]	10 [69]	500 – 2000 [69]	Low	Susceptible to disease when stressed[53]
11	C. lusitanica	10.4 [8]	5.5 [70]	1000 – 3000 [71]	Low	Susceptible to disease when stressed[53]

Productivity surfaces (total volume ha⁻¹) modelled for *P. radiata*: 16 year rotation

Yields per wood supply region for *P. radiata* under a \$50 tonne scenario

Productivity surfaces (total volume ha⁻¹) modelled for *E. fastigata*: 16 year rotation

Yields per wood supply region for *E. fastigata* under a \$50 tonne scenario

Productivity surfaces (total volume ha⁻¹) modelled for *E. regnans*: 16 year rotation

Yields per wood supply region for *E. regnas* under a \$50 tonne scenario

How much energy would 240,000 ha short rotation bioenergy forest produce in 16 years?

- 878 PJ total after 16 years
- or 55 PJ yr⁻¹
- Exceeding the Climate Change Commission's advisory 2035 target of 37 PJ yr⁻¹

Knowledge gaps and research priorities

Species shoke Which candidate tree species is suitable for which site conditions? Controlled plots varying species selection established across a range of sites and conditions Stacking density Which stocking density provides the optimal yield for each species? Controlled plots varying stocking density established across a range of sites and conditions Tree stock quality What impacts do stock type and stock quality have on growth and yield? Controlled plots varying regime length established across a range of sites and conditions Regime length What is the most effective regime length for each species? Controlled plots varying regime length established across a range of sites and conditions Stacking density How strongly does soil eritity impact yield in short rotation regimes? Specifically target frage frage Stacking density How strongly does soil eritity impact yield in short rotation regimes? Specifically target frage frage Impact of parying What is the most effective erace of additional fertilization? Test by spraying at different rates How to plant What is the most effective erace of additional step reparation regime for each species? Test different techniques across a range of plots at harvest Soli acrobin inspact Fraget different techniques across a range of plots at harvest Test different techniques across a range of plots at harvest How to plant Wha	Theme	Key question	How to test
Stocking density provides the optimal yield for each species? Controlled plots varying stocking density established across a range of sites and conditions Tree stock quality Which stocking density provides the optimal yield for each species? Controlled plots varying stocking density established across a range of sites and conditions Regine length What is the most effective regine length for each species? Controlled plots varying regime length established across a range of sites and conditions Altitude / slope Which species is most effective growing on high-altitude or steepland sites? Specifically target fish-altitude or steepland sites in trial Impact of soli fertility How suitable is short rotation forestry on frost-prone sites? Specifically target fish-altitude or steepland sites in trial Impact of soli fertility How suitable is short rotation forestry on frost-prone sites? Specifically target fish tarces More the most effective level of spraying treatment? Test by spraying at different tares How to harvest What is the most effective level of spraying treatment? Test different techniques across a range of plots at harvest How to plant What is the most effective level of spraying treatment? Test different techniques across a range of plots at harvest Soli le rosion risks What is the most effective level of spraying treatment? Test by spraying at different tachniques across a range of plots at harvest <t< td=""><td>Species choice</td><td>Which candidate tree species is suitable for which site conditions?</td><td>Controlled plots varying species selection established across a range of sites and conditions</td></t<>	Species choice	Which candidate tree species is suitable for which site conditions?	Controlled plots varying species selection established across a range of sites and conditions
Tree stock quality What impacts do stock type and stock quality have on growth and yield? Controlled picts varying tree stock quality established across a range of sites and conditions Regime length What is the most effective regime length for each species? Controlled picts varying tree stock quality established across a range of sites and conditions Atitude / slope Which species is most effective growing on high-altitude or steepland sites? Specifically target high-altitude or steepland sites in trial Impact of stafformal fertilization How suitable is short rotation forestry on frost-prone sites? Specifically target frost-prone sites in trial Impact of stafformal fertilization What is the most effective rate of additional fertilization? Test by adding fertilization at different rates Impact of stafformal fertilization What is the most effective level of spraying treatment? Test by adding fertilization at different rates How to plant What is the most effective level of spraying treatment? Test different techniques across a range of plots at harvest What damage How susceptible are high stocking densities to wind damage? Evaluate wind damage impacts throughout trial according to site and stocking Soil fertility impacts What are the impacts of short rotation on soil fertility? Evaluate pest damage insoil fertility throughout trial Soil staffield kareset What is the most effective laves on soil erosion ri	Stocking density	Which stocking density provides the optimal yield for each species?	Controlled plots varying stocking density established across a range of sites and conditions
Regime length What is the most effective regime length for each species? Controlled plots varying regime length established across a range of sites and conditions conditions Altitude / slope Which species is most effective growing on high-altitude or steepland sites? Specifically target high-altitude or steepland sites in trial Site suitability How suitable is short rotation forestry on frost-prone sites? Specifically target frost-prone sites in trial Impact of soll fertility How strongly does soil fertility impact yield in short rotation regimes? Specifically target frost-prone sites in trial Impact of soll fertility What is the most effective level of syraying tratment? Test by syraying at different rates How to harvest What is the most effective harvest method for given site criteria? Test different techniques across a range of plots at harvest Post damage What is the most effective level of syraying tratment? Test different techniques across a range of plots at harvest Post damage How susceptible are high stocking densities to wind damage? Evaluate exit admage impacts throughout trial according to site and stocking Soil fertility impacts What are the impacts of short rotation on soil fertility? Evaluate changes in soil fertility throughout trial Soil alerosion risks What are the impacts of short rotation and wide pole short work oppact rule according to trial site, relief and stocking density. From these criteria develop spatial modes tor polet stork oppact rule according to trial site, relief and sto	Tree stock quality	What impacts do stock type and stock quality have on growth and yield?	Controlled plots varying tree stock quality established across a range of sites and conditions
Altitude / slopeWhich species is most effective growing on high-altitude or steepland sites?Specifically target high-altitude or steepland sites in trialSite suitabilityHow suitable is short rotation forestry on freestry on specifically target frost-prone sites in trialImpact of soll fertilityWow strongly does soll fortility impact yield in short rotation regimes?Specifically target sites across a range of known fertilityImpact of sprayingWhat is the most effective level of spraying treatment?Test by adding fertilization at different ratesHow to harvestWhat is the most effective harvest method for given site criteria?Test different techniques across a range of plots at harvestHow to plantWhat is the most effective lavel of spraying treatment?Test different techniques across a range of plots at harvestWind damageHow susceptible are high stocking densities to wind damage?Evaluate wind damage impacts throughout trial according to site and stockingSoil fertility impactsWhat are the impacts of short rotation on soil erosin risk?Kaluate changes in soil fertility throughout trialSoil carbon impactsWhat are the impacts of short rotation on soil erosin risk?Kaluate changes in soil acrohon troughout trialSoil carbon impactsWhat are the impacts of short rotation negimes?Evaluate changes in soil acrohon troughout trialSoil carbon impactsWhat wat use in plant word op altarbon op soil erosin risk?Kaluate changes in soil acrohon throughout trialSoil carbon impactsWhat are the impacts of short rotation negimes?Evaluate changes in soil acrohon throughout trialSoil carbon impactsWhat are t	Regime length	What is the most effective regime length for each species?	Controlled plots varying regime length established across a range of sites and conditions
Site suitabilityHow suitable is short rotation forestry on frost-prone sites?Specifically target frost-prone sites in trialImpact of soil fertilityHow stongly does soil fertility impact yield in short rotation regimes?Specifically target sites across a range of known fertilityImpact of additional fertilizationWhat is the most effective rate of additional fertilizationTest by adding fertilization at different ratesImpact of sprayingWhat is the most effective level of spraying treatment?Test by formate across a range of plots at harvestHow to plantWhat is the most efficient planting and site preparation regime for each species at high stocking densities?Test different techniques across a range of plots at harvestWind damageHow suceptible are high stocking densities to wind damage?Evaluate wind damage impacts throughout trial according to site and stocking to site and stockingSoil fertility impactsWhat are the impacts of short rotation on soil fertility?Evaluate changes in soil fertility throughout trialSoil carbon insksWhat are the impacts of short rotation on soil carbon?Kaluate changes in soil carbon throughout trialSoil carbon impactsWhat inspect will short rotation on soil carbon?Kaluate changes in soil carbon throughout trialWhat prest signating under short-rotation regimes?Evaluate changes in soil carbon throughout trialSoil carbon impactsHow cost-effective is planting under short-rotation regimes?Evaluate changes in soil carbon throughout trialSoil carbon impactsHow cost-effective is planting under short-rotation regimes?Evaluate planting costs within a trial according to trial ster, r	Altitude / slope	Which species is most effective growing on high-altitude or steepland sites?	Specifically target high-altitude or steepland sites in trial
Impact of soil fertilityHow strongly does soil fertility impact yield in short rotation regimes?Specifically target sites across a range of known fertilityImpact of additional fertilizationWhat is the most effective rate of additional fertilization?Test by adding fertilization at different ratesImpact of sprayingWhat is the most effective level of spraying treatment?Test by spraying at different ratesHow to harvestWhat is the most effective harvest method for given site criteria?Test different techniques across a range of plots at harvestHow to plantWhat is the most effective harvest method for given site criteria?Test different techniques across a range of plots at harvestWind damageHow susceptible are high stocking densities to wind damage?Evaluate wind damage impacts throughout trial according to site and stockingSoil fertility impactsWhat are the impacts of short rotation on soil erosion risk?Measure rates of soil erosion trisk?Soil carbon impactsWhat will short rotation na soil erosion risk?Evaluate changes in soil fertility throughout trialCosts of plantingHow cost-effective is planting under short-rotation regimes?Evaluate planting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scaleCosts of plantingHow cost-effective is planting under short-rotation regimes?Evaluate planting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scaleCosts of plantingHow cost-effective is harvesting under short-rotation regimes?Evaluate planting costs w	Site suitability	How suitable is short rotation forestry on frost-prone sites?	Specifically target frost-prone sites in trial
Impact of additional fertilizationWhat is the most effective rate of additional fertilization?Test by adding fertilization at different ratesImpact of sprayingWhat is the most effective level of spraying treatment?Test by spraying at different ratesHow to harvestWhat is the most effective harvest method for given site criteria?Test different techniques across a range of plots at harvestHow to plantTest different techniques across a range of plots at harvestTest different techniques across a range of plots at harvestWind damageHow susceptible are high stocking densities to wind damage?Evaluate wind damage impacts throughout trial according to site and stockingSoil fertility impactsWhat are the impacts of short rotation on soil fertility?Kaluate pest damage inspire trial according to site and stockingSoil carbon impactsWhat are the impacts of short rotation on soil ersion risk?Measure rates of soil ersion throughout trialSoil carbon impactsWhat are the impacts of short rotation on soil carbon?Evaluate changes in soil carbon throughout trialSoil carbon impactsWhat are the impacts of short rotation on soil carbon?Evaluate changes in soil carbon throughout trialWater useWhat impact will short rotation hardwood plantations have on water yields?Evaluate planting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scaleCosts of plantingHow cost-effective is harvesting under short-rotation regimes?Evaluate harvesting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models	Impact of soil fertility	How strongly does soil fertility impact yield in short rotation regimes?	Specifically target sites across a range of known fertility
Impact of sprayingWhat is the most effective level of spraying treatment?Test by spraying at different ratesHow to harvestWhat is the most effective harvest method for given site criteria?Test different techniques across a range of plots at harvestHow to plantWhat is the most efficient planting and site preparation regime for each species at high stocking densities?Test different techniques across a range of plots at harvestWind damageHow susceptible are high stocking densities to wind damage?Evaluate wind damage impacts throughout trial according to site and stockingSoil fertility impactsWhat are the impacts of short rotation on soil fertility?Evaluate changes in soil fertility throughout trialSoil erosion risksWhat are the impacts of short rotation on soil crosion risks?Measure rates of soil erosion throughout trialWater useWhat is planting under short-rotation on soil crosion risks?Keluate changes in soil carbon throughout trialWater useWhat are the impacts of short rotation on soil crosion risks?Measure rates of soil erosion throughout trialSoil erosion risksWhat are the impacts of short rotation on soil crosion risks?Keluate changes in soil carbon throughout trialSoil erosion fisksWhat is the most effective is planting under short-rotation regimes?Evaluate changes in soil carbon throughout trialSoil crosion fisksWhat are the impacts of short rotation on soil crosion risks?Keluate seand catchment hydrology throughout the trialSoil erosion fisksWhat is the most effective is planting under short-rotation regimes?Evaluate planting costs within a trial according to trial site, relief a	Impact of additional fertilization	What is the most effective rate of additional fertilization?	Test by adding fertilization at different rates
How to harvestWhat is the most effective harvest method for given site criteria?Text different techniques across a range of plots at harvestHow to plantWhat is the most efficient planting and site preparation regime for each species at high stocking densities?Text different techniques across a range of plots at harvestWind damageHow succeptible are high stocking densities to wind damage?Evaluate wind damage impacts throughout trial according to site and stockingPest damageMat are the impacts of short rotation on soil fertility?Evaluate hanges in soil fertility throughout trialSoil erosion risksMat are the impacts of short rotation on soil crison risks?Measure rates of soil arosion throughout trialSoil aroben impactsWhat are the impact of short rotation on soil crison risks?Kaluate planting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at caleCosts of plantingHow cost-effective is harvesting under short-rotation regimes?Evaluate harvesting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at caleCosts of harvestingHow cost-effective is harvesting under short-rotation regimes?Evaluate harvesting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at caleCosts of harvestingHow cost-effective is harvesting under short-rotation regimes?Evaluate harvesting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at ca	Impact of spraying	What is the most effective level of spraying treatment?	Test by spraying at different rates
How to plantWhat is the most efficient planting and site preparation regime for each species at high stocking densities?Test different techniques across a range of plots at harvestWind damageHow susceptible are high stocking densities to wind damage?Evaluate wind damage impacts throughout trial according to site and stockingPest damageHow susceptible are high stocking densities to pest damage?Evaluate changes in soil fertility throughout trial according to site and stockingSoil fersion risksWhat are the impacts of short rotation on soil fertility?Evaluate changes in soil fertility throughout trialSoil carbon impactsWhat are the impacts of short rotation on soil carbon?Evaluate changes in soil carbon throughout trialWater useWhat impact will short rotation hardwood plantations have on water yields?Evaluate soil water use and catchment hydrology throughout trialCosts of plantingHow cost-effective is planting under short-rotation regimes?Evaluate harvesting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scaleCommercial viabilityCan short rotation regimes be diversified to allow sawlog production?Evaluate harvesting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scaleCommercial viabilityCan short rotation regimes be diversified to allow sawlog production?Evaluate piel of sawlog-viable timber from trial	How to harvest	What is the most effective harvest method for given site criteria?	Test different techniques across a range of plots at harvest
Wind damageHow susceptible are high stocking densities to wind damage?Evaluate wind damage impacts throughout trial according to site and stockingPest damageHow susceptible are high stocking densities to pest damage?Evaluate pest damage impacts throughout trial according to site and stockingSoil fertility impactsWhat are the impacts of short rotation on soil fertility?Evaluate changes in soil fertility throughout trialSoil erosion risksWhat are the impacts of short rotation on soil carbon?Kaluate changes in soil carbon throughout trialWater useWhat impact will short rotation hardwood plantations have on water yields?Evaluate changes of swithin a trial according to trial site, relief and stocking dansity. From these criteria develop spatial models to predict such costs at scaleCosts of harvestingHow cost-effective is harvesting under short-rotation regimes?Evaluate harvesting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scaleCommercial viabilityCan short rotation regimes be diversified to allow sawlog production?Evaluate harvesting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scale	How to plant	What is the most efficient planting and site preparation regime for each species at high stocking densities?	Test different techniques across a range of plots at harvest
Pest damageHow susceptible are high stocking densities to pest damage?Evaluate pest damage impacts throughout trial according to site and stockingSoil fertility impactsWhat are the impacts of short rotation on soil fertility?Evaluate changes in soil fertility throughout trialSoil erosion risksWhat are the impacts of short rotation on soil erosion risks?Measure rates of soil erosion throughout trialSoil carbon impactsWhat are the impacts of short rotation on soil carbon?Evaluate changes in soil carbon throughout trialWater useWhat impact will short rotation hardwood plantations have on water yields?Evaluate soil water use and catchment hydrology throughout the trialCosts of plantingHow cost-effective is planting under short-rotation regimes?Evaluate harvesting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scaleCosts of harvestingHow cost-effective is harvesting under short-rotation regimes?Evaluate harvesting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scaleCommercial viabilityCan short rotation regimes be diversified to allow sawlog production?Evaluate planting costa within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scale	Wind damage	How susceptible are high stocking densities to wind damage?	Evaluate wind damage impacts throughout trial according to site and stocking
Soil fertility impactsWhat are the impacts of short rotation on soil fertility?Evaluate changes in soil fertility throughout trialSoil erosion risksWhat are the impacts of short rotation on soil erosion risks?Measure rates of soil erosion throughout trialSoil carbon impactsWhat are the impacts of short rotation on soil carbon?Evaluate changes in soil carbon throughout trialWater useWhat impact will short rotation hardwood plantations have on water yields?Evaluate soil water use and catchment hydrology throughout the trialCosts of plantingHow cost-effective is planting under short-rotation regimes?Evaluate planting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scaleCosts of harvestingHow cost-effective is harvesting under short-rotation regimes?Evaluate harvesting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scaleCommercial viabilityCon short rotation regimes be diversified to allow sawlog production?Evaluate yield of sawlog-viable timber from trial	Pest damage	How susceptible are high stocking densities to pest damage?	Evaluate pest damage impacts throughout trial according to site and stocking
Soil erosion risksWhat are the impacts of short rotation on soil erosion risks?Measure rates of soil erosion throughout trialSoil carbon impactsWhat are the impacts of short rotation on soil carbon?Evaluate changes in soil carbon throughout trialWater useWhat impact will short rotation hardwood plantations have on water yields?Evaluate soil water use and catchment hydrology throughout the trialCosts of plantingHow cost-effective is planting under short-rotation regimes?Evaluate planting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scaleCosts of harvestingHow cost-effective is harvesting under short-rotation regimes?Evaluate harvesting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scaleCommercial viabilityCan short rotation regimes be diversified to allow sawlog production?Evaluate planter yield of sawlog-viable timber from trial	Soil fertility impacts	What are the impacts of short rotation on soil fertility?	Evaluate changes in soil fertility throughout trial
Soil carbon impactsWhat are the impacts of short rotation on soil carbon?Evaluate changes in soil carbon throughout trialWater useWhat impact will short rotation hardwood plantations have on water yields?Evaluate soil water use and catchment hydrology throughout the trialCosts of plantingHow cost-effective is planting under short-rotation regimes?Evaluate planting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scaleCosts of harvestingHow cost-effective is harvesting under short-rotation regimes?Evaluate harvesting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scaleCommercial viabilityConst of trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scaleCommercial viabilityConst of trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scale	Soil erosion risks	What are the impacts of short rotation on soil erosion risks?	Measure rates of soil erosion throughout trial
Water useWhat impact will short rotation hardwood plantations have on water yields?Evaluate soil water use and catchment hydrology throughout the trialCosts of plantingHow cost-effective is planting under short-rotation regimes?Evaluate planting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scaleCosts of harvestingHow cost-effective is harvesting under short-rotation regimes?Evaluate harvesting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scaleCommercial viabilityCon short rotation regimes be diversified to allow sawlog production?Evaluate yield of sawlog-viable timber from trial	Soil carbon impacts	What are the impacts of short rotation on soil carbon?	Evaluate changes in soil carbon throughout trial
Costs of plantingHow cost-effective is planting under short-rotation regimes?Evaluate planting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scaleCosts of harvestingHow cost-effective is harvesting under short-rotation regimes?Evaluate harvesting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scaleCommercial viabilityCan short rotation regimes be diversified to allow sawlog production?Evaluate harvesting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scale	Water use	What impact will short rotation hardwood plantations have on water yields?	Evaluate soil water use and catchment hydrology throughout the trial
Costs of harvestingHow cost-effective is harvesting under short-rotation regimes?Evaluate harvesting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scaleCommercial viabilityCan short rotation regimes be diversified to allow sawlog production?Evaluate harvesting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scale	Costs of planting	How cost-effective is planting under short-rotation regimes?	Evaluate planting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scale
Commercial viability Can short rotation regimes be diversified to allow sawlog production? Evaluate yield of sawlog-viable timber from trial	Costs of harvesting	How cost-effective is harvesting under short-rotation regimes?	Evaluate harvesting costs within a trial according to trial site, relief and stocking density. From these criteria develop spatial models to predict such costs at scale
	Commercial viability	Can short rotation regimes be diversified to allow sawlog production?	Evaluate yield of sawlog-viable timber from trial

Next steps: short rotation bioenergy forest trial

What is the **opportunity**?

- New Zealand can potentially exceed the Climate Change Commission's bioenergy target for 2035 through short rotation bioenergy forestry
- Marginal land <1% NZ's land area could deliver >5% current fossil fuel energy demand
- Priority species for this are likely to be *P. radiata, E. fastigata, E. regnans*
- Critical unknowns include: silviculture, erosion risks, planting regime, harvesting regime, processing and transport costs
- Urgently-needed knowledge can be gained through rapidly implementing a short rotation bioenergy forest trial

Thank you

Alan Jones, Peter Hall, Dave Palmer, Serajis Salekin, Dean Meason

